Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 1): 159756, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461574

RESUMO

This is the first detailed study on 14C activity in the environment surrounding a nuclear facility in India. Samples of food matrices and wild plants from the off-site locations of the PHWR nuclear power plant (NPP) at Kaiga were analysed by liquid scintillation spectrometry, results were validated by accelerator mass spectrometry, and an extensive database (N = 142) was established. The stable isotope ratio of carbon (δ13C) in terrestrial plants varied from -33.5 to -23.3 ‰. The maximum excess 14C activity recorded in terrestrial biota was 44 Bq kg-1C (19 pMC). About 75 % of the samples exhibited specific activity in the range 228-249 Bq kg-1C (101-110 pMC). Statistical tests on the 14C specific activity dataset for 2.3-5, 5-10, and 10-20 km radial zones confirmed that the impact of the operation of the NPP on the environment beyond 5 km is minimal. The study suggests that the 14C activity released through gaseous effluents from Kaiga NPP is transported to greater distances along the axis of the valley than that predicted by the Gaussian plume model and those reported for other NPP sites worldwide. This is due to the unique topography of the Kaiga valley in which wind flow channelling, strong winds in the valley mouth, and calm wind within the valley due to the blocking effect by hills for the south-westerly wind regime play dominant roles in the transport of gaseous effluents. The 14C specific activity values at upwind monitoring stations located at >5 km distance from the NPP during the south-westerly wind regime were higher than those observed during the north-easterly wind regime when the same monitoring stations were located on the downwind side. The ingestion dose to the population in the 2.3-5 km radius zone, attributable to the release of 14C from the NPP, was 0.75 µSv y-1. This is a negligibly small fraction of the ICRP recommended dose limit of 1000 µSv y-1 for the public from other than natural sources. The dose due to the natural 14C activity in the Kaiga region was 12 µSv y-1, corresponding to the ambient natural activity of 230 Bq kg-1 C.


Assuntos
Biota , Centrais Nucleares , Radioisótopos de Carbono , Índia , Gases
2.
J Environ Radioact ; 257: 107076, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493636

RESUMO

The air exchange rate (AER) is a critical parameter that governs the levels of exposure to indoor pollutants impacting occupants' health. It has been recognized as a crucial metric in spreading COVID-19 disease through airborne routes in shared indoor spaces. Assessing the AER in various human habitations is essential to combat such detrimental exposures. In this context, the development of techniques for the rapid determination of the AER has assumed importance. AER is generally determined using CO2 concentration decay data or other trace gas injection methods. We have developed a new method, referred to as the "222Rn incremented method", in which 222Rn from naturally available soil gas was injected into the workplace for a short duration (∼30 min), homogenized and the profile of decrease of 222Rn concentration was monitored for about 2 h to evaluate AER. The method was validated against the established 222Rn time-series method. After ascertaining the suitability of the method, several experiments were performed to measure the AER under different indoor conditions. The AER values, thus determined, varied in a wide range of 0.36-4.8 h-1 depending upon the ventilation rate. The potential advantages of the technique developed in this study over conventional methods are discussed.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Monitoramento de Radiação , Radônio , Humanos , Poluição do Ar em Ambientes Fechados/análise , Solo
3.
J Environ Radioact ; 255: 107006, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162146

RESUMO

This is a detailed study on oxide (CO2) and reduced (hydrocarbons, CnHm) forms of 14C releases through gaseous effluents from the Kaiga nuclear power plant (NPP), on the West Coast of India, where 4 × 220 MW(e) pressurized heavy water reactors (PHWRs) are operating. The gaseous effluent from the common stack of reactor units 3 and 4 (each of 220 MW(e)) was sampled from 2017 to 2020 for 14C activity monitoring and analysed for 14C activity by liquid scintillation counting. The normalized release rate corresponding to the four-year monitoring period had a geometric mean value of 0.12 TBq GW(e)-1 a-1 (geometric standard deviation = 7.4), and the arithmetic mean with associated standard deviation was 0.75 ± 1.47 TBq GW(e)-1 a-1. The relative percentage contribution of reduced form (CH4) of 14C species was less than 1.27% of the total release. The normalized release rate from Kaiga NPP was similar to those reported for the other PHWR NPPs of the world. The 14C specific activity in the ambient air in the vicinity of the NPP was monitored at four locations. The maximum excess 14C activity values in the ambient air in the vicinity of the NPP, evaluated by comparing the specific activity recorded for the clean air region at ∼300 km from the NPP, were 65.1 Bq kg-1C (28.76 pMC) and 222.4 Bq kg-1C (98.23 pMC) for the years 2019 and 2020 respectively. In addition, the release rates were calculated from the Gaussian plume model using site-specific atmospheric dilution factors and the excess 14C specific activity measured at four off-site monitoring stations. The calculated values of release rates were in agreement (within a factor of ∼3) with the measured values.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Centrais Nucleares , Radioisótopos de Carbono/análise , Óxido de Deutério , Poluentes Radioativos do Ar/análise , Índia , Gases
4.
Chem Biol Interact ; 363: 109977, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35636501

RESUMO

Thorium (232Th), long lived (14.05 billion years) most stable thorium isotope, is thrice naturally abundant than uranium. 232Th occurs as rocky deposits and black monazite sands on the earth's crust geographically distributed in coastal South India and other places globally. Monazite sand comprises of cerium and large quantities of radioactive thorium. The environmental hazard lies in monazite rich area being termed as High Background Radiation Area (HBRA). In this study, we mimicked the HBRA under controlled chamber conditions using thorium oxalate as a thorium source for BALB/c mice exposure. Furthermore, sequential radio-disintegration of 232 Th leads to thoron (220Rn), the noble gas and other daughter products/progeny predominantly via alpha decay/emissions. Such progeny tend to attach to aerosol and dust particles having potential inhalation hazard followed by alpha emissions and damages that we evaluated in mouse lung tissues post thoron inhalation. Secondly, along with the radio disintegration and alpha emission, high energy gamma is also generated that can travel to various distant organs through the systemic circulation, as significant findings of our study as damages to the liver and kidney. The mechanistic findings include the damages to the hematological, immunological and cellular antioxidant systems along with activation of canonical NF-κß pathway via double stranded DNA damage.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Animais , Antioxidantes , Rim , Fígado , Pulmão/química , Camundongos , Camundongos Endogâmicos BALB C , Produtos de Decaimento de Radônio/análise , Tório/análise , Tório/toxicidade
5.
Sci Rep ; 12(1): 7528, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534517

RESUMO

The radionuclide transfer between compartments is commonly described by transfer parameters representing the ratio of concentrations of an element in two compartments for equilibrium conditions. This is a comprehensive study on the soil-to-grass transfer factor (Fv) and grass-to-cow milk transfer coefficient (Fm) for stable strontium (Sr) for soil-grass (pasture)-cow (Bos taurus) milk environmental pathway under field conditions for a high rainfall tropical monsoonal climatic region of the Indian subcontinent. The study was conducted in the vicinity of the Kaiga nuclear power plant (NPP), situated ~ 58 km inland of the West Coast of the Indian subcontinent. A grass field was developed exclusively for this study, and two cows of the native breed were raised to graze on it. The soil, grass, and milk were analyzed to evaluate the Fv and the Fm values for the stable Sr. For comparison, several pasture lands and the cows raised by the villagers and a dairy farm were also studied. The Fv values were in the range 0.18-8.6, the geometric mean (GM) being 1.8. The correlations of Fv values with a range of physicochemical parameters are presented. The GM values for Fm were 2.2 × 10-3 d L-1 and 7.2 × 10-3 d L-1 for the two cows raised for this study, 2.6 × 10-3 d L-1 for those raised by the villagers, and 4.2 × 10-3 d L-1 for the dairy farm. The site-specific Fm value for the region was determined as 3.2 × 10-3 d L-1. The concentration ratio (CR), defined as the ratio of Sr concentration in milk to that in feed under equilibrium conditions, exhibited less variability (1.8 × 10-2-5.4 × 10-2) among the three categories of cows.


Assuntos
Leite , Poluentes Radioativos do Solo , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Lactação , Leite/química , Melhoramento Vegetal , Poaceae , Solo , Poluentes Radioativos do Solo/análise , Estrôncio/metabolismo
6.
Luminescence ; 37(5): 828-836, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293139

RESUMO

Motivated by our previous study on Sm3+ ions as thermoluminescence (TL) sensitizers to the BaO-ZnO-LiF-B2 O3 -Yb2 O3 glass system, in the current study we examined the effect of Er3+ ion co-doping on the TL characteristics of this glass system. The 4f-4f electronic transitions of the Er3+ and Yb3+ ions were confirmed via the optical absorption spectrum. Notably, the use of Yb3+ -Er3+ ions failed to improve the TL intensity, sensitivity, and trap density. However, they enabled the glass system to function as an activator-quencher system. The linearity range and effective atomic number remained unaffected after co-doping. In addition, the problem of anomalous fading caused a remnant signal of just 58% after a week of storage of the Yb3+ monodoped glass. This was resolved by the optimum co-doping of Er3+ ions to achieve an 89% signal. The co-doping of Er3+ ions to the BaO-ZnO-LiF-B2 O3 -Yb2 O3 glass system regulated its thermal stability and therefore supplemented its potential for radiation monitoring in food processing and retrospective dosimetry.


Assuntos
Óxido de Zinco , Vidro , Íons , Estudos Retrospectivos , Dosimetria Termoluminescente
7.
Appl Radiat Isot ; 172: 109685, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33799067

RESUMO

A method for the determination of 14C activity in the ambient air was optimised with the development of a simple setup for the regeneration of CO2 from carbonate sample and saturating the absorber in <45 min for direct determination of activity by liquid scintillation counting (LSC). Atmospheric CO2 was trapped in NaOH solution and precipitated as BaCO3 by adding BaCl2. The carbonate sample was taken in a newly designed regeneration system, subjected to acid hydrolysis, and the absorber (CarboSorb-E) was saturated with the CO2 regenerated from carbonate sample. This allowed optimisation of CO2 absorption by the absorber (up to ~ 2.3941 g of CO2/10 mL with an average of 2.1688 g) and a minimum detectable activity value of 14 Bq kg-1C for a counting time of 300 min (8 Bq kg-1C for 1000 min) was achieved with Quantulus - 1220 LSC system. The necessity of (i) the measurement of the total volume of air sampled, (ii) the determination of trapping efficiency for CO2 in the NaOH, recovery of 14C in chemical processing of BaCO3, and subsequent regeneration and absorption processes, and (iii) independent determination of carbon content in the air for expressing the results in terms of 14C specific activity (Bq kg-1C), are avoided in this method. The method is capable of yielding accurate results, in a considerably shorter time when compared to previously reported methods, with a deviation of <2.2% from the target value (with a relative standard deviation of 1.1%, and a relative error of 0.53%) when ambient air samples from clean air region (region not affected by local anthropogenic sources of 14C) are analysed. Validation of the method was performed by (i) analysing BaCO3 sample derived from ambient air by accelerator mass spectrometry, and (ii) analysing the CO2 produced from the combustion of IAEA C3 reference material. Upon validation, the suitability of the method for determining small excess 14C specific activity in the vicinity of a nuclear power plant was demonstrated.

8.
J Environ Radioact ; 226: 106345, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33032834

RESUMO

Accelerator mass spectrometry and benzene synthesis coupled with liquid scintillation spectrometry are often used for accurate measurements of 14C activity in the environmental matrices. Thermal oxidation is one of the methods employed for 14C determination in environmental matrices. In this method, the sample is oxidised at high temperature (600-900 °C) to convert carbon species to CO2 and trapped in an amine-based absorber for determining the activity in a liquid scintillation counting (LSC) system. In this study, the performance of a commercially available tube furnace system (pyrolyser), for batch combustion of samples, was evaluated for the determination of 14C specific activity in terrestrial biota samples. Significant improvements over the manufacturer specified method, which is primarily designed for analysis of samples with activity well above the environmental background level, was implemented to achieve accurate determination of 14C specific activity at ambient background level. In the improved method, the CO2 produced from the combustion of the sample was isolated from the combustion products through cryogenic trapping and then absorbed in the absorber (Carbo-Sorb E) through a simple off-line transfer process. This allowed (i) optimisation of CO2 absorption by the absorber (2.2477 g of CO2/10 mL), (ii) achieving good accuracy and precision in the measurements, and a minimum detectable activity value of 13 Bq kg-1C for a counting time of 300 min (7 Bq kg-1C for 1000 min), (iii) avoiding uncertainty associated with the determination of recovery of 14C in the combustion and trapping process, and (iv) elimination of the need for an independent determination of carbon content (%) for expressing the results in terms of 14C specific activity. The method is capable of yielding accurate results with a deviation of <2.4% from the target value for IAEA C3 quality assurance reference material (with a relative standard deviation of 1.40%, and relative error of 0.34%). The combined uncertainty (1σ) associated with the measurements was computed to be 3.4%. Upon optimisation, the suitability of the method for the determination of 14C specific activity in typical terrestrial biota samples of clean air region (region not affected by local anthropogenic sources) and for the quantification of a small increase in the 14C activity above ambient levels in the vicinity of a nuclear power plant is demonstrated.


Assuntos
Monitoramento de Radiação , Carbono , Radioisótopos de Carbono/análise , Centrais Nucleares
9.
Appl Radiat Isot ; 166: 109390, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33091858

RESUMO

Tritium in the form of tritiated water is easily incorporated into terrestrial biota as tissue free water tritium (TFWT). A part of TFWT is converted into organically bound tritium (OBT) through metabolic processes. For the computation of NE-OBT activity (expressed as Bq L-1 of combustion water) in terrestrial plants, knowledge on 'water equivalent factor (WEQp)', defined as the volume of water produced from the combustion of 1 kg of the dry sample, is essential. On a global scenario, experimental data are not available on this parameter. This paper presents (i) a method for determination of WEQp by combustion method using a tube furnace system, (ii) a large database (N = 294) on WEQp parameter for samples of tropical monsoonal climate region of the Indian subcontinent, and (iii) NE-OBT activity in terrestrial biota samples (N = 186) collected from the vicinity of a PHWR nuclear power plant of India. The data generated in this study on WEQp serves for the validation of the data compiled in IAEA (2009 and 2010), which are estimated based on the hydrogen content of protein, fat and carbohydrates, and the fractions of protein, fat and carbohydrates. The WEQp varied in the ranges of 0.492-0.678 L kg-1 (GM = 0.569 Bq L-1, GSD = 1.06), 0.520-0.630 L kg-1 (GM = 0.557 Bq L-1, GSD = 1.02) 0.473-0.633 L kg-1 (GM = 0.562 Bq L-1, GSD = 1.02) for non-leafy vegetables, leafy vegetables, and fruits, respectively. A comparison between the experimental WEQp data with those compiled in the IAEA report revealed that the maximum deviation between the two data sets is <10%. The NE-OBT activity in the food samples collected from 2.3 to 20 km zone around NPP had a geometric mean (GM) value of 25.4 Bq L-1 (GSD = 1.6, N = 186). Variations in NE-OBT activity with different seasons of the year are discussed.

10.
Sci Rep ; 10(1): 16548, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024133

RESUMO

In an adjoining publication, we demonstrated the novel technique to harvest soil gas of natural origin as a highly efficient source of 222Rn for calibration applications in a large volume 222Rn calibration chamber. Its advantages over the use of conventional high strength 226Ra sources, such as the capability to serve as a non-depleting reservoir of 222Rn and achieve the desired concentration inside the calibration chamber within a very short time, devoid of radiation safety issues in source handling and licensing requirements from the regulatory authority, were discussed in detail. It was also demonstrated that stability in the 222Rn concentration in large calibration chambers could be achieved within ± 20% deviation from the desired value through a semi-dynamic mode of injection in which 222Rn laden air was periodically pumped to compensate for its loss due to leak and decay. The necessity of developing a theory for determining the appropriate periodicity of pumping was realized to get good temporal stability with a universally acceptable deviation of ≤ ± 10% in the 222Rn concentration. In this paper, we present a mathematical formulation to determine the injection periods (injection pump ON and OFF durations) for the semi-dynamic operation to achieve long term temporal stability in the 222Rn concentration in the chamber. These computed pumping parameters were then used to efficiently direct the injection of soil gas into the chamber. We present the mathematical formulation, and its experimental validations in a large volume calibration chamber (22 m3). With this, the temporal stability of 222Rn concentration in the chamber was achieved with a deviation of ~ 3% from the desired value.

11.
Sci Rep ; 10(1): 16547, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024139

RESUMO

The paper describes a novel technique to harvest 222Rn laden air from soil gas of natural origin as a highly efficient source of 222Rn for calibration applications in a walk-in type 222Rn calibration chamber. The technique makes use of a soil probe of about 1 m to draw soil gas, through a dehumidifier and a delay volume, using an air pump to fill the calibration chamber. 222Rn concentration in the range of a few hundred Bq m-3 to a few tens of kBq m-3 was easily attained in the chamber of volume 22.7 m3 within a short pumping duration of 1 h. A new technique referred to as "semi-dynamic mode of operation" in which soil gas is injected into the calibration chamber at regular intervals to compensate for the loss of 222Rn due to decay and leak is discussed. Harvesting soil gas has many important advantages over the traditional methods of 222Rn generation for calibration experiments using finite sources such as solid flow-through, powdered emanation, and liquid sources. They are: (1) soil gas serves as an instantaneous natural source of 222Rn, very convenient to use unlike the high strength 226Ra sources used in the calibration laboratories, and has no radiation safety issues, (2) does not require licensing from the regulatory authority, and (3) it can be used continuously as a non-depleting reservoir of 222Rn, unlike other finite sources. The newly developed technique would eliminate the need for expensive radioactive sources and thereby offers immense application in a variety of day to day experiments-both in students and research laboratories.

12.
J Environ Radioact ; 220-221: 106298, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32560887

RESUMO

Measurement of indoor 222Rn concentration and interpretation of distribution patterns are important for inhalation dosimetry in occupational and residential areas. Experimental determination of 222Rn concentration distribution and estimation of inhalation doses depend on the underlying aspects such as calibration of the detectors, accuracy of the techniques etc. Therefore, 222Rn concentration distribution needs to be very well understood in a closed domain for the controlled studies. In the recent times, Computational fluid dynamics (CFD) technique has gained a lot of attention for the prediction and visualization of indoor 222Rn concentration profiles and their mixing ability in the domain. The present study aims to simulate the effect of forced mixing on the 222Rn concentration profile in a 22 m3 experimental chamber. This chamber is designed for carrying out the controlled experiments, calibration and inter-comparison studies of various types of 222Rn detectors. Effect of different parameters such as time, flow rates, fan-off and fan-on conditions have been studied on the transient response, extent of the air mixing patterns and subsequently on 222Rn concentration profile in the chamber. Further, Non uniformity index (NUI) is introduced as a measure of the uniformity of the distribution in the closed domain. NUI is estimated for different cases in order to efficiently interpret the effect of above mentioned parameters on 222Rn profile in the chamber. This study will be useful to represent the turbulent conditions in real indoor domains and occupational facilities as U-mines during calibration and inter-comparison exercises of different 222Rn detectors.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Hidrodinâmica , Radiometria , Radônio
13.
Radiat Prot Dosimetry ; 187(4): 466-481, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31665519

RESUMO

A walk-in type 222Rn calibration chamber of volume 22.7 m3, which has traceability to international standards, is established at the Centre for Advanced Research in Environmental Radioactivity, Mangalore University, India. It has a human-machine interface communication system, a programmable logic controller and sensor feedback circuit for controlling and data acquisition of relative humidity (RH) and temperature (T). An innovative method for the generation of desired 222Rn concentration (a few hundred Bq m-3 up to about 36 kBq m-3) using soil gas as a source was adopted. Leak rates of 222Rn from the chamber for the mixing fan ON and OFF conditions were determined to be 0.0011 and 0.00018 h-1 respectively. With the exhaust system fully turned on, the maximum clearance rate of the chamber was 0.58 ± 0.07 h-1. Excellent spatial uniformity in 222Rn concentration in the chamber was confirmed (with a mean value of relative standard deviation < 12%) through measurements at 23 locations using CR-39 film-based passive devices. Demonstration of calibration applications was performed using charcoal canister and PicoRad vials as the 222Rn adsorption devices. The study shows that gamma spectrometry is a convenient alternative approach to liquid scintillation analysis of PicoRad vials for 222Rn measurement.


Assuntos
Gases/análise , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Radônio/análise , Contagem de Cintilação/instrumentação , Espectrometria gama/instrumentação , Calibragem , Carvão Vegetal , Humanos , Umidade
14.
Radiat Prot Dosimetry ; 184(3-4): 290-293, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31297520

RESUMO

Elevated levels of natural background radiation due to scattered patches of monazite sand around the beaches of Mangalore, India, have been reported earlier. A comparative study of gamma dose rates was performed in both normal background and high natural background radiation areas around Mangalore using different types of portable gamma dosimeters. In addition to this, gamma-ray energy spectra were acquired, in situ, using a NaI(Tl) based portable gamma spectrometer. Soil and sand samples were collected for laboratory analysis with HPGe detectors. Measurements were carried out during the years 2016-18 revealed that in majority of the locations the gamma dose rates were similar to the normal background regions, whereas, in certain locations the dose rates were higher with values up to 530 nSv/h.


Assuntos
Radiação de Fundo , Raios gama , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Espectrometria gama/métodos , Humanos , Índia , Metais Terras Raras , Doses de Radiação
15.
J Environ Radioact ; 192: 194-207, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29982004

RESUMO

As a part of establishing a regional database on natural radioactivity, the atmospheric concentrations of 210Pb and 7Be were measured over a three and half year period (2014-2017) in Mangalore and Kaiga in the South West Coast of India. A total of 99 air samples, collected in the different months of the year, were analysed in this study. The mean activity concentrations of 7Be and 210Pb were found to be 5.5 ±â€¯3.1 mBq m-3 and 1.1 ±â€¯0.73 mBq m-3, respectively. Both the radionuclides exhibited strong seasonal variations, with maximum concentration of 7Be occurring in the summer and that of 210Pb in the winter season. The concentration of both the radionuclides was minimum in the rainy season. Higher 210Pb concentration during winter was attributed to the ingression of continental air masses due to the wind regime from the North East. The sunspot number index of the solar activity also plays an important role in the increase and decrease of 7Be concentration in the air. A clear trend of increased and lowered concentration of 7Be with lower and higher solar activity (low and high sunspot number), respectively, in accordance with the 11-year solar cycle, was observed in this study. The temporal variation of PM10 concentration was also studied and it showed maximum value in the winter and minimum in the rainy season with an average of 56.9 µg m-3. Statistically significant positive correlation was observed between the PM10 and 210Pb activity concentration, whereas a weak correlation was observed between PM10 and 7Be. This is due to the fact that 7Be is largely associated with sub-micrometer size particles, whereas PM10 is contributed by larger sizes. The dependence of the activity concentrations of 7Be and 210Pb with meteorological parameters such as rainfall, temperature, and humidity was studied through linear regression analysis. A significant correlation was observed between 7Be and 210Pb concentrations with rainfall intensity (with identical correlation coefficients), which suggested that the removal mechanisms of these two radionuclides were similar. 7Be showed a strong correlation with temperature, whereas 210Pb with humidity. A comparison of the data obtained in the present study for the South West Coast of India with the global literature values of 7Be and 210Pb in aerosols showed that the values did not reflect the well-known latitudinal dependence of the 7Be tropospheric fluxes. Overall, the study provides an improved understanding of the correlation and variability of 210Pb and 7Be concentrations in the atmosphere in the South West Coast of India.


Assuntos
Poluentes Radioativos do Ar/análise , Berílio/análise , Radioisótopos de Chumbo/análise , Monitoramento de Radiação , Radioisótopos/análise , Atmosfera/química , Índia , Chuva/química
16.
J Environ Radioact ; 186: 71-77, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28886873

RESUMO

Air-to-grass mass interception factors for radionuclide are important basic input parameter for the estimation of radiation dose to the public around a nuclear power plant. In this paper, we present the determination of air-to- grass mass interception factors for iodine using a 2 m × 2 m × 2 m (l × b × h) size environmental chamber. The temperature, humidity, and rainfall inside the environmental chamber was controlled to required values to simulate different environmental conditions. Grass (Pennisetum purpureum, Schum), grown in pots, was kept inside the environmental chamber and stable iodine in elemental form was sublimed quickly inside the chamber to simulate an accidental release of iodine to the environment. The concentration of iodine in the air was measured periodically by drawing air through a bubbling setup, containing 1% sodium carbonate solution. The mass interception factor for dry deposition varied in the range of 0.25-7.7 m2 kg-1 with mean value of 2.2 m2 kg-1 with respect to fresh weight of grass, and that due to wet deposition varied in the range of 0.6-4.8 m2 kg-1 with mean value of 2.3 m2 kg-1. The mass interception factor was inversely correlated with the total iodine deposited through dry deposition as well as with the rainfall.


Assuntos
Poluentes Radioativos do Ar/análise , Iodo/análise , Monitoramento de Radiação , Reatores Nucleares , Poaceae/química , Radioisótopos
17.
J Environ Radioact ; 172: 237-248, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28411425

RESUMO

Regulating the environmental discharge of 220Rn (historically known as thoron) and its decay products from thorium processing facilities is important for protection of environment and general public living in the vicinities. Activated charcoal provides an effective solution to this problem because of its high adsorption capacity to gaseous element like radon. In order to design and develop a charcoal based Thoron Mitigation System, a mathematical model has been developed in the present work for studying the 220Rn transport and adsorption in a flow through charcoal bed and estimating the 220Rn mitigation factor (MF) as a function of system and operating parameters. The model accounts for inter- and intra-grain diffusion, advection, radioactive decay and adsorption processes. Also, the effects of large void fluctuation and wall channeling on the mitigation factor have been included through a statistical model. Closed form solution has been provided for the MF in terms of adsorption coefficient, system dimensions, grain size, flow rate and void fluctuation exponent. It is shown that the delay effects due to intra grain diffusion plays a significant role thereby rendering external equilibrium assumptions unsuitable. Also, the application of the statistical model clearly demonstrates the transition from the exponential MF to a power-law form and shows how the occurrence of channels with low probability can lower mitigation factor by several orders of magnitude. As a part of aiding design, the model is further extended to optimise the bed dimensions in respect of pressure drop and MF. The application of the results for the design and development of a practically useful charcoal bed is discussed.


Assuntos
Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento de Radiação , Tório/análise , Adsorção , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Carvão Vegetal , Difusão , Modelos Estatísticos , Modelos Teóricos
18.
J Environ Radioact ; 172: 249-260, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28411426

RESUMO

Exposure due to thoron (220Rn) gas and its decay products in a thorium fuel cycle facility handling thorium or 232U/233U mixture compounds is an important issue of radiological concern requiring control and mitigation. Adsorption in a flow-through charcoal bed offers an excellent method of alleviating the release of 220Rn into occupational and public domain. In this paper, we present the design, development, and characterization of a Thoron Mitigation System (TMS) for industrial application. Systematic experiments were conducted in the TMS for examining the 220Rn mitigation characteristics with respect to a host of parameters such as flow rate, pressure drop, charcoal grain size, charcoal mass and bed depth, water content, and heat of the carrier gas. An analysis of the experimental data shows that 220Rn attenuation in a flow through charcoal bed is not exponential with respect to the residence time, L/Ua (L: bed depth; Ua: superficial velocity), but follows a power law behaviour, which can be attributed to the occurrence of large voids due to wall channeling in a flow through bed. The study demonstrates the regeneration of charcoal adsorption capacity degraded due to moisture adsorption, by hot air blowing technique. It is found that the mitigation factor (MF), which is the ratio of the inlet 220Rn concentration (Cin) to the outlet 220Rn concentration (Cout), of more than 104 for the TMS is easily achievable during continuous operation (>1000 h) at a flow rate of 40 L min-1 with negligible (<1 cm of water column) pressure drop. The Thoron Mitigation System based on adsorption on charcoal bed offers a compact and effective device to remove 220Rn from affluent air streams in a space constrained domain. The prototype system has been installed in a thorium fuel cycle facility where it is being evaluated for its long-term performance and overall effectiveness in mitigating 220Rn levels in the workplace.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Tório/análise , Adsorção , Poluentes Radioativos do Ar/análise , Carvão Vegetal , Centrais Nucleares , Radônio/análise , Urânio/análise
19.
J Environ Radioact ; 142: 87-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25658471

RESUMO

Radon ((222)Rn), thoron ((220)Rn), and their decay products contribute a major fraction (more than 50%) of doses received from ionisation radiation in public domain indoor environments and occupation environments such as uranium mines, thorium plants, and underground facilities, and are recognised as important radiological hazardous materials, which need to be controlled. This paper presents studies on the removal of (222)Rn and (220)Rn from air using coconut shell-based granular activated charcoal cylindrical adsorber beds. Experiments were conducted to evaluate the (222)Rn and (220)Rn adsorption characteristics, and the mitigation efficiency of coconut-based activated charcoal available in India. The performance parameters evaluated include breakthrough time (τ) and adsorption coefficient (K), and degassing characteristics of the charcoal bed of varying dimensions at different flow rates. While the breakthrough for (222)Rn occurred depending on the dimension of the adsorber bed and flow rates, for (220)Rn, the breakthrough did not occur. The breakthrough curve exhibited a stretched S-shape response, instead of the theoretically predicted sharp step function. The experiments confirm that the breakthrough time individually satisfies the quadratic relationship with respect to the diameter of the bed, and the linear relationship with respect to the length, as predicted in the theory. The K value varied in the range of 2.3-4.12 m(3) kg(-1) with a mean value of 2.99 m(3) kg(-1). The K value was found to increase with the increase in flow rate. Heating the charcoal to ∼ 100 °C resulted in degassing of the adsorbed (222)Rn, and the K of the degassed charcoal and virgin charcoal were found to be similar with no deterioration in performance indicating the re-usability of the charcoal.


Assuntos
Poluentes Radioativos do Ar/química , Poluição do Ar em Ambientes Fechados/prevenção & controle , Contaminação Radioativa do Ar/prevenção & controle , Carvão Vegetal/química , Radônio/química , Adsorção , Cocos/química , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...